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1. INTRODUCTION

The method of successive approximations apparently was pioneered by Picard [1] and later
employed by Hadamard [2], Hohenemser and Prager [3], Kolousek [4], Ananiev [5],
Nowacki [6], Birger and Panovko [7], Biderman [8] and others. Presently, it almost never
appears in the texts on vibration, due to development of the versatile "nite element method.
The present study attempts to inject new life to it, yet not for its original purpose of
approximate solutions. Rather, a closed-form solution is obtained by the resurrected
method. Moreover, the solutions obtained as intermediate approximations of the mode
shape are shown to become closed-form solutions for the inhomogeneous beams.

The di!erential equation that governs the free vibrations of the beams of variable
cross-section reads

d2

dx2 AEI (x)
d2=

dx2 B!u2oA(x)=(x)"0. (1)

Birger and Mavliutov [9] suggest to replace this equation by the equivalent integral
equation. As they mention (p. 401) &&equation (1) can be brought to the form of an integral
equation, which gives series of advantages for the approximate solution.'' The amplitude
values of the shear force <

y
(x) and the bending moment M

z
(x) read

d

dx AEI(x)
d2=

dx2 B"!<
y
(x), EI(x) d2=/dx2"!M

z
(x). (2, 3)

Birger and Mavliutov [9] integrate equation (1) between x and ¸. For speci"city, we
consider the cantilever beam. We note that the shearing force at x"¸ is absent. We get

!

d

dx AEI(x)
d2=

dx2 B"u2 P
L

x

oA(x
1
)=(x

1
) dx

1
. (4)

We repeat the operation of integration utilizing the condition M
z
(¸)"0, to get

EI(x)
d2=

dx2
"u2 P

L

x
P

L

x1

oA (x
2
)=(x

2
) dx

2
dx

1
. (5)
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We solve the direct vibration problem. Since it is assumed that the sti!ness EI(x) is known,
we divide both sides of equation (5) by it, and integrate the result twice between zero to x. In
view of the conditions

=(0)"0, d=(0)/dx"0, (6)

we obtain, for the cantilever beam,

=(x)"u2 P
x

0
P

x1

0

1

EI (x) P
L

x2
P

L

x3

oA (x
4
)=(x

4
) dx

4
dx

3
dx

2
dx

1
. (7)

This is a homogeneous integral equation that is equivalent to di!erential equation (1) and
the appropriate boundary conditions. It is an integral equation, since the unknown function
appears under the integral sign. In a short form, equation (7) can be written as

="u2K=, (8)

where K= is the integral operator, represented by the right-hand side of equation (7). It is
easy to see that= (x) is the solution of equation (8), as is the function C=(x) where C is an
arbitrary constant. Equation (8) possesses the trivial solution=(x),0, yet for some values
of u2"u2

1
, u2

2
, etc. it has non-trivial solutions, with u

1
, u

2
,2being natural frequencies. If

one tries as =(x
1
), the function

=
1
(x)"(x/¸)2, (9)

one gets the second approximation

=
(2)
"u2

1
K=

(1)
. (10)

Were=
(1)

an exact solution, then the functions=
(2)

and=
(1)

would coincide for all values of
x. Yet=

(1)
is not an exact solution. Hence,

=
2
(x)O=

1
(x). (11)

Birger and Mavliutov [9] impose the condition

=
(2)

(¸)"=
(1)

(¸)"1 (12)

resulting in

u2
(1)
"[K=

(1)
(¸)]~1"CP

L

0
P

z1

0

1

EI(x) P
L

x2
P

L

x3

oA
x2
4

¸2
dx

4
dx

3
dx

2
dx

1D
~1

. (13)

According to reference [9], &&usually already "rst approximation yields an error not
exceeding 2}5%. It can be shown that the process of successive approximations always
converges to the "rst natural frequency. Obtaining by this means of consequent frequencies
and modes requires performing the orthogonalization process.''Note that Collatz [10], and
Ponomarev et al. [11] utilize another, integral criterion for determining the successive
approximations of the natural frequency.
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2. EVALUATION OF THE EXAMPLE BY BIRGER AND MAVLIUTOV

We evaluate a particular example with two objectives in mind: (1) illustration of the
method of successive approximations and (2) use of its intermediate results in the subsequent
section of inhomogeneous beams.

Birger and Mavliutov [9] consider the example of a blade in form of a cantilever beam.
They write: &&for construction of the approximate model the cross-section of the blade can be
assumed to be constant.'' For determination of fundamental vibration frequency they used
the integral method,

u2
(1)
"[K=

(1)
(¸)]~1"C

oA

EIP
L

0
P

x1

0
P

L

x2
P

L

x3
A
x
4
¸B

2
dx

4
dx

3
dx

2
dx

1D
~1

. (14)

This corresponds to the "rst approximation in equation (9). We "nd

K=
(1)

(x)"
oA

EI P
L

0
P

x1

0
P

L

x2
P

L

x3
A
x
4
¸B

2
dx

4
dx

3
dx

2
dx

1

"

oA

EI

1

¸2 P
x

0
P

x1

0
A
1

4
¸4!

1

3
¸3x

2
#

1

12
x4
2B dx

2
dx

1
(15)

or

K=
(1)

(x)"oA¸4[1
8
(x/¸)2! 1

18
(x/¸)3# 1

360
(x/¸)6]/EI. (17)

The value of K=
(1)

(x) at x"¸ equals

K=
(1)

(¸)" 13
180

oA¸4/EI. (18)

The "rst approximation of the natural frequency becomes

u2
(1)
"180

13
EI/oA¸4. (19)

For further re"nement we calculate

=
(2)

(x)"u2
(1)

K=
(1)

(x)"K=
(1)

(x)/K=
(1)

(¸)"180
13

[1
8
(x/¸)2! 1

18
(x/¸)3# 1

360
(x/¸)6]. (20)

Now,

K=
(2)

(x)"
oA

EI P
L

0
P

x1

0
P

L

x2
P

L

x3
G
180

13 C
1

8 A
x
4
¸B

2
!

1

18 A
x
4
¸B

3
#

1

360 A
x
4
¸B

6

DH dx
4
dx

3
dx

2
dx

1

"

oA¸4

EI C
1

131 040A
x

¸B
10
!

1

1092 A
x

¸B
7
#

1

208 A
x

¸B
6
!

71

1092 A
x

¸B
3
#

59

416 A
x

¸B
2

D (21)

leading to the second approximation

u2
(2)
"[K=

(2)
(¸)]~1"

8190

661

EI

oA¸4
+12)39

EI

oA¸4
(22)
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Note that Birger and Mavliutov [9] do not give an expression for K=
(2)

(x); they quote
a factor of 12.23 in equation (22). For further re"nement we calculate

=
(3)

(x)"u2
(2)

K=
(2)

(x)"K=
(2)

(x)/K=
(2)

(¸)

"

8190

661 C
1

131 040 A
x

¸B
10
!

1

1092 A
x

¸B
7
#

1

208 A
x

¸B
6
!

71

1092 A
x

¸B
3
#

59

416 A
x

¸B
2

D . (23)

We get

K=
(2)

(x)"
oA

EI P
L

0
P

x1

0
P

L

x2
P

L

x3

=
(3)

(x
4
) dx

4
dx

3
dx

2
dx

1

"

oA¸4

EI C
1

254 077 824 A
x

¸B
14
!

1

698 016 A
x

¸B
11
#

1

84 608 A
x

¸B
10
!

71

74 032 A
x

¸B
7

#

413

84 608 A
x

¸B
6
!

45 541

698 016 A
x

¸B
3
#

12 031

84 608 A
x

¸B
2

D , (24)

leading to the third approximation

u2
(3)
"

15 879 864

1 244 461

EI

oA¸4
+12)36

EI

oA¸4
, (25)

which nearly coincides with the exact solution [12], associated with the factor
+1)8754+12)3596.

3. REINTERPRETATION OF THE INTEGRAL METHOD
FOR INHOMOGENEOUS BEAMS

As we saw above, the integral method can be e!ectively utilized for the approximate
solution of eigenvalue problems. Its new twist will be presented here for obtaining closed-
form solutions by the integral method.

We pose the following problem: "nd closed-form solutions of beams of variable inertial
coe$cient, and variable sti!ness

d (x)"o (x)A(x), D(x)"E (x)I(x) (26)

so that the beam possesses the pre-selected mode shape t (x). To this end we rewrite
equation (5) by identifying the mode shape =(x) with the selected function t (x), in
conjunction with equation (26)

D(x)"Cu2 P
L

x
P

L

x1

d(x
2
)t (x

2
) dx

2
dx

1DNtA(x). (27)

By substituting various functions t
j
(x) into equation (27) we obtain appropriate

expressions of the sti!ness D(x). We adopt functions

t
j
(x)"(x/¸) j`4!1

6
( j#2) ( j#3) ( j#4) (x/¸)3#1

2
( j#1) ( j#3) ( j#4) (x/¸)2,

for j*0 (28)

that are proportional to the displacement of the uniform beam under the load (x/¸)j.
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Consider a particular example. Let the width b(x) of the cross-section of the beam be
constant and equal b, whereas the height varies linearly,

h (x)"(h
1
!h

0
)x/¸#h

0
, (29)

where h
0

is the height at x"0, while h
1
is the height at x"¸. Then the cross-sectional area

is

A(x)"bh(x)"bh
0 A1#

h
1
!h

0
h
0

x

¸B (30)

or, with a de"ning the ratio of heights

a"h
1
/h

0
, (31)

we have

A(x)"bh(x)"A
0
[1#(1!a)x/¸], (32)

where A
0

is the cross-sectional area at x"0. The moment of inertia reads

I (x)"bh (x)3/12"I
0
[1#(1!a)x/¸]3, (33)

where

I
0
"bh3

0
/12 (34)

is the moment of inertia at x"0. The modulus of elasticity is written as

E(x)"E
0
e (x), (35)

where E
0

is the modulus of elasticity at x"0. The sti!ness becomes

D(x)"D
0
e(x) [1!(1!a)x/¸]3, (36)

where D
0

is the sti!ness at the origin

D
0
"E

0
I
0
. (37)

Let the density be given as a polynomial of mth order,

o (x)"o
0
u (x), (38)

where

u (x)"1#b
1
(x/¸)#b

2
(x/¸)2#b

3
(x/¸)3#2#b

m
(x/¸)m. (39)

Equation (27) is rewritten as

e (x) [1!(1!a)x/¸]3"Cu2o
0
A

0 P
L

x
P

L

x1

u (x) [1!(1!a)x/¸]t (x
2
) dx

2
dx

1DND
0
tA. (40)

We de"ne the natural frequency as

u2"cD
0
/o

0
A

0
¸4, (41)
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where c the arbitrary parameter. Since the factor multiplying c is a known quantity, one can
maintain that an arbitrary value of the natural frequency can be obtained by designing
a material with a given modulus of elasticity. Indeed, in order for the beam to have an
arbitrary natural frequency as given in equation (38), the modulus of elasticity must take the
form

e (x)"ceJ (x), (42)

where eJ (x) reads

eJ (x)"
E (x)

E (0)
, E (x)"

1

¸4

CP
L

x
P

L

x1

u (x
2
) [1!(1!a)x

2
/¸]t(x

2
) dx

2
dx

1D
tA[1!(1!a)x/¸]3

. (43)

The quantity eJ (x) can be designated as a parent modulus of elasticity. The function
e(x)"ceJ (x) then produces a one-parameter family of elastic moduli. Consider now the
particular cases.

4. UNIFORM MATERIAL DENSITY

Let the density of the beam's material be constant:

o (x)"o
0
, b

j
"0, j"1, 2,2, m. (44)

The parent elastic modulus is

eJ
0
(m)"

26#16m#6m2!4m3#m4

26[1!(1!a)m]2
. (45)

As is seen we obtain a rational expression for any a, except a"1, corresponding to the
beam of the uniform cross-section, in which case

eJ
0
(m)"(26#16m#6m2!4m3#m4)/26 (46)

and the parent modulus of elasticity becomes a polynomial expression. Expressions (45) and
(46) correspond to function (28) with j"0, thus, subscript 0 in equations (45) and (46)
respectively. Figure 1 depicts the parent modulus of elasticity for values a

1
"1

3
, a

2
"0)5

and a
3
"1. Fixing j at unity in equation (28) yields

eJ
1
(m)"

132#82m#32m2!18m3#2m4#m5

66[1!(1!a)m]2 (2#m)
. (47)

Figure 2 portrays variation of eJ
1
(m), for a

1
"1

3
, a

2
"0)5 and a

3
"1.

For j"2 in equation (28) we obtain

eJ
2
(m)"

3(413#258m#103m2!52m3#3m4#2m5#m6)

413[1!(1!a)m]2 (2#2m#m2)
. (48)

Figure 3 shows the function eJ
2
(m) for various values of a and j"2. For j"3, one gets

eJ (m)"
1016#673m#258m2!121m3#4m4#3m5#2m6#m7

254[1!(1!a)m]2 (4#3m#2m2#m3)
. (49)

Figure 4 illustrates the dependence of eJ
3
(m) on m for di!erent values of a, for j"3.



Figure 1. Variation of parent modulus of elasticity when j"0.

Figure 2. Variation of parent modulus of elasticity when j"1.
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5. LINEARLY VARYING DENSITY

Let the material density vary as

o (x)"o
0
(1#bx/¸), (50)

whereas the cross-sectional area and the moment of inertia are varying as in equations (32)
and (34) respectively. The following results are obtained for the parent modulus of elasticity,
for j"0:

eJ
0
(m)"[182#142b#(112#102b)m#(42#62b)m2!(28!22b)m3

#(7!18b)m4#5bm5]/M(182#142b) [1!(1!a)m]2N. (51)



Figure 3. Variation of parent modulus of elasticity when j"2.

Figure 4. Variation of parent modulus of elasticity when j"3.
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Again, for a beam with uniform cross-section the variation is polynomial, while for values of
aO1, the rational expression is obtained. For j"1, 2 and 3 we arrive at

eJ
1
(m)"2[528#413b#(328#298b)m#(128#183b)m2!(72!68b)m3

#(8!47b)m4#(4#6b)m5#3bm6]/M(528#413b) [1!(1!a)m]2 (2#m)N, (52)

eJ
2
(m)"3[3717#2912b#(2322#2107b)m#(927#1302b)m2

!(468!497b)m3#(27!308b)m4#(18#21b)m5

#(9#14b)m6#7bm7]/M(3717#2912b) [1!(1!a)m]2 (3#2m#m2)N, (53)



Figure 5. Variation of parent modulus of elasticity for the beam with linearly varying material density
(b"1, j"0).

Figure 6. Variation of parent modulus of elasticity for the beam with linearly varying material density
(b"1, j"1).
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eJ
3
(m)"[5080#3984b#(3185#2888b)m#(1290#1792b)m2

#(605!696b)m3#(20!400b)m4#(15#16b)m5#(10#12b)m6

#(5#8)m7#4bm8]/M(1270#996b) [1!(1!a)m]2(4#3m#2m2#m3)N. (54)

Figures 5}8 depict some of the dependencies of the parent modulus of elasticity for various
values of a, b"1.



Figure 7. Variation of parent modulus of elasticity for the beam with linearly varying material density
(b"1, j"2).

Figure 8. Variation of parent modulus of elasticity for the beam with linearly varying material density
(b"1, j"3).

358 LETTERS TO THE EDITOR
6. PARABOLICALLY VARYING DENSITY

Let the density vary as

o (x)"o
0
[1#b

1
x/¸#b

2
(x/¸)2] . (55)

The expressions for the parent modulus of elasticity reads, for j"0,

eJ
0
(m)"[728#568b

1
#465b

2
#(448#408b

1
#362b

2
)m

#(168#248b
1
#259b

2
)m2!(112!88b

1
!156b

2
)m3
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#(28!72b
1
#53b

2
)m4#(20b

1
!50b

2
)m5

#15b
2
m6]/M(728#568b

1
#465b

2
) [1!(1!a)m]2N. (56)

Again, this is a rational expression for aO1 and polynomial expression for a"1. For
j"1, 2 and 3 the expressions of eJ (m) are

eJ
1
(m)"2[1584#1239b

1
#1016b

2
#(984#894b

1
#793b

2
)m

#(384#549b
1
#570b

2
)m2!(216!204b

1
!347b

2
)m3

#(24!141b
1
#124b

2
)m4#(12#18b

1
!99b

2
)m5

#(9b
1
#7b

2
)m6#7b

2
m7]/M(1584#1239b

1
#1016b

2
) [1!(1!a)m]2 (2#m)N, (57)

eJ
2
(m)"3[18 585#14 560b

1
#11 952b

2
#(11 610#10 535b

1
#9344b

2
)m

#(4635#6510b
1
#6736b

2
)m2!(2340!2485b

1
!4128b

2
)m3

#(135!1540b
1
#1520b

2
)m4#(90#105b

1
!1088b

2
)m5

#(45#70b
1
#84b

2
)m6#(35b

1
#56b

2
)m7

#28b
2
m8]/M(18 585#14 560b

1
#11 952b

2
) [1!(1!a)m]2 (3#2m#m2)N , (58)

eJ
3
(m)"[55 880#43 824b

1
#36 000b

2
#(35 035#31 768b

1
#28 176b

2
)m

#(14 190#19 712b
1
#20 352b

2
)m2!(6655!7656b

1
!12 528b

2
)m3

#(220!4400b
1
#4704b

2
)m4#(165#176b

1
!3120b

2
)m5

#(110#132b
1
#144b

2
)m6#(55#88b

1
#108b

2
)m7#(44b

1
#72b

2
)m8

#36b
2
m9]/M(13 970#10 956b

1
#9000b

2
) [1!(1!a)m]2 (4#3m#3m2#m3)N . (59)

7. CAN SUCCESSIVE APPROXIMATIONS SERVE AS MODE SHAPES?

Now, we pose a somewhat provocative question. The "rst approximation of the mode
shape in equation (9) does not satisfy all boundary conditions. It satis"es geometric
conditions, but not the essential ones. Yet, two subsequent approximations, utilized in this
study are given in equations (20) and (23); they satisfy all boundary conditions. Can they
serve as exact mode shapes of some inhomogeneous beams? The reply is a$rmative.
Substituting equation (20) into equation (27) we get, for the beam with uniform density,

eJ (m)"
3(416#301m#186m2#71m3!44m4#3m5#2m6#m7)

416(3#2m#m2)
, (60)

Likewise, substitution of equation (23) into equation (27) yields

eJ (m)"(367 392#265 575m#163 758m2#61 941m3!39 876m4#3270m5

#2112m6#954m7!204m8#3m9#2m10#m11)/[122 464(3#2m#m2)]. (61)



Figure 9. Variation of parent modulus of elasticity produced by the second approximation serving as an exact
mode shape of a beam with uniform material density.

Figure 10. Variation of parent modulus of elasticity produced by the third approximation serving as an exact
mode shape of a beam with uniform material density.

360 LETTERS TO THE EDITOR
Likewise, one can obtain the closed-form solutions for the beams with linearly or
parabolically varying material density. We do not reproduce these formulae to save space.
Figures 9}12 depict the variations of the modulus of elasticity. Figures 9 and 10 are
associated with constant density, whereas Figures 11 and 12 depict the variations of
modulus of elasticity for the linearly varying density, b"1.

8. CONCLUSION

As we have demonstrated a method that was designed and used for decades for
approximate evaluation of the natural frequencies can be &&twisted'' to yield closed-form
solutions.



Figure 11. Variation of parent modulus of elasticity produced by the second approximation serving as an exact
mode shape of a beam with linearly varying material density (b"1).

Figure 12. Variation of parent modulus of elasticity produced by the third approximation serving as an exact
mode shape of a beam with linearly varying material density (b"1).
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